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ABSTRACT ] g g é 4

The problem of low energy atomic scattering of electrons by multi~electron
atoms is formulated in the adiabatic exchange approximation. The effects of target
dstortion by the electric field of the incident charged particle are determined by
computing a polarization potential to be included in the total scattering interaction.
The polarization potential is obtained through a polarized orbital calculation on
atomic systems described by Hartree-Fock type wave functions. Application is made
to /Nq and Li where electron exchange is included in the reduction of the scattering
equation, and the phase shifts and total elastic scattering cross sections are obtained
through the solution of a set of integrodifferential equations. Exchange effects are
noted explicitly by solving the scattering equations neglecting electron exchange
and comparing the computed cross sections. The total elastic scaftering cross sections .
for Li and Na agree well with recent measurements over the entire experimental
range, and are significantly better than any previously published results. Zﬁ
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I. INTRODUCTION

The theoretical treatment of atomic collision processes has received a great
deal of attention by many investigators for the last thirty or more years. One can
find a vast amount of literature devoted to almost any phase of the problem. Yet
adequate solutions to almost all but the very simplest atomic collision phenomena
have yet to be realized. In this paper we will concern outselves with electron-
atom collision processes, and more particularly we will consider only the case of
electrons of low incident energy on single unbound atoms or ions.

The atomic scattering of electrons presents a very complex problem even
in the very simplest systems, the least complicated being that of electron-hydrogen
atom scattering. Even in this case, however, complete solutions have not as yet
been obtained. The Hamiltonian for this system is essentially the same as that for
the helium atom which has, of course, never been solved exactly. Scattering by
heavier atoms yields far more complicated Hamiltonians than that of the hydrogen
system and, of necessity, presents even more formidable problems in seeking any-
thing approximating an exact solution. It can be said, then, that ot the present
stage of development in atomic scattering problems, exact solutions are nonexistent,
and progress toward an agreement of theory and experiment lies in finding the proper
approximations which yield accurate results, and thus more insight into the scattering
processes.

For low energy electrons incident on an atomic system, there are two major
effects which complicate the problem. These are 1) the exchange interactions
between the incident electron and the atomic electrons, and 2) the distortion of
the atomic systems by the electric field of the incident charged particle. For
certain atomic collision problems both these effects are more pronounced than
usual. In the case of the alkali atoms this is particularly true since the valence
electron is very loosely bound. Earlier calculations for the alkalisl-3 have 'shown

the extreme sensitivity of the calculated cross sections to the accuracy of the
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polarization potential in the total scattering interaction and the exchange effecfs.3
In this paper the problem of low energy elastic scattering of electrons by alkali~
type atoms is treated with application to atomic lithium and sodium in the energy
range from .003 to 25.0 eV. The effects of exchange and target distortion have
been calculated here through the use of the adiabatic exchange approximation
wherein the target atom is distorted by the static field of the incoming electron.
The polarization potential is calculated by a method of polarized orbitals similar

to that used by Temkin4'5 and Co||owcy,6 and electron exchange between the
incident and the valence electron is included through explicit use of the adiabatic
exchange approximation which leads to a set of integrodifferential equations for the

free electron wave functions.

Il. THE POLARIZATION POTENTIAL

In this section the distortion of an atomic system by a slow incident electron
and the resulting polarization potential is developed from the application of first
order perturbation theory to Hartree-Fock electron orbitals. We note than analo-
gous perturbation calculations on Hartree and Hartree-Fock systems have been
carried out heretofore in order to determine atomic dipole polarizabilities (Sternheimer7);
core polarization due to valence electrons in alkali atoms (Co”awoyé); and the
polarization potential for electron scattering (Temkin4).

We consider the first order perturbation by a free electron of an atomic
system whose unperturbed Hartree-Fock (H.F.) self consistent field wave functions
have been determined. Under the influence of the perturbation the H.F. one electron
orbitals and the H.F. energy depend on the coordinates of the free electron. The
perturbed orbitals 'lJi of the H.F. determinant for the atomic system then satisfy
the following equation (in Rydberg units) which depends on the free electron

coordinate Fee !

- —> - 2 - —> —
I'f) = A(r‘ll rf) + -r—]—f:-" wi (r]l I’f) = ei(rf) ¢i(rll

-
r
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and
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In these equations ?] , 72 are the coordinates of bound electrons and _r} is that of
the free electron. In order to simplify the above equations for the perturbed H. F.

orbitals we write U, (r], f) in the form
LE T = 0F) + T @

where éi(r_bl) is the unperturbed H. F. orbital which satisfies

=97 + VE) - ATDIEE) = € 8,0 ®
with
2oL [ L
and
— — S — —> 2 — —
A o) =) [ [ 55 o) Fd ) 8- %)
1

Our objective is to determine the first order perturbations X, of the single electron

orbitals '¥i of the Hartree=Fock determinant for the bound atomic system. In this
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calculation the term 2/r” is treated as a perturbation on the atomic system and the

perturbations X, are determined from first order perturbation theory. ok

The integro-
differential equations for the first order perturbation xi(r_’] , _r}) of the H.F. orbitals
may be determined from equation (1). These have been written down explicitly by
Callawcvy,6 but are too complicated to solve in any reasonable time. However,
if all the perturbed Coulomb and exchange integrals are dropped from the equations
for the first order perturbation of the H.F. orbitals, the resulting differential equations
are more tractable. The effect of omitting these integrals is discussed by Cc1||<:|wc1y6
and is shown to be reasonably small,

The presence of the unpertutbed exchange integrals A(r]) which are retained
in the equations for the perturbed Hartree-Fock orbitals still leave the equations in
a very complicated form. However, these terms can be replaced very conveniently
and with reasonable accuracy by an average exchange potential by the method
given by SIc:fer.8 In the simplest form of Slater's method, the exchange term of

equation (7) is replaced by the function

A(r) o) =6[ o Z@ AERAYEEPTS ®)

The summation in this expression is carried over all occupied orbitals of both spins.
With this substitution and with the omission of the perturbation terms in the Coulomb
and exchange integrals, the resulting equation for the perturbation )(i of a H.F.

orbital becomes:

[-vi2+v(r’])-As(T] e]x(r [Hé(’)lz—dr-—]@(,)

1f- !
()
In this equation we expand the perturbation term 2/r]f which appears in the two

terms on the right side, by the multipole expansion
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where 0 is the angle between M and reo Substituting (10) into the two terms in the
brackets on the right of (9) we note that all but the spherically symmetric term in the
integral will vanish, Dropping the quadrupole and higher order terms the bracket

expression then becomes

2r 2r
2% - 2 <
[Je@f = a7 -2 - cure]
r> < r>

where ¢ is the lesser and rS the greater of e Fee We note that for large values
of m the first and secc:nd terms in this expression will cancel each other leaving
only the dipole term r_; cos 6. Also noting that for smaller values of " the
spherically symmetric term of the potential will be small as compared to the Coulomb
term, we make the dipole approximation and retain only the dipole term in the
bracketed expression.

To obtain the first order perturbation of each of the atomic electron orbitals

Qi we thus have the following pair of differential equations to solve:

2r
2 - = 1 —
[-\7] + V(r]) - As(r]) - e;)] Xi(r], rf) = - —5 cos 0 Qi(r]), for rf>r] (”a)
ki
2 o, > — 2rg -
[-V] + V(r]) - As(r]) - € ] Xi(r], rf) = =-—3 cos 6 éi(r]), for r ‘>rf (Ilb)

r

1
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These equations must be solved in the "inner" region where e < m and in the
"outer” region where FRaS and the solutions matched at the boundary =0y
With the solutions for the perturbations Xi of the Hartree-Fock orbitals
the dipole polarization potential is then determined from the expressioné'
2r
% < — - - _
Vp(rf) = Z ‘r @i (r])——2- cos O Xi(r], rf) d N (12)
. r
| >
where the sum extends over all occupied orbitals 9.
The reduction of equations (11) into radial equations and (12) into integrals

over radial coordinates is accomplished easily by expansion of the functions 3,

and xi in the form

50)) = Py )/, Yy (8, ¢) (13)
and
XF T =Y Ul € Y@ 04
L, m

7
With these substitutions the differential equations (9) separate into the radial equations

2 2r

| i .
d~ ¢ (L+1) _ o7 __1
[ 5 3 V(r]) +As(r]) + e]JUn’ﬁ('r],rf) == Png(rl)' rf>r] (154)
dr r r
1 1 f
2 ‘o 2r
& g+ _ o _f
[drz = = V() + AL+ e ]unm,(r],rf) == P 1y > (13

1 " "
. m-m
which must be solved and matched af the boundary o= The constants Cn

in equation (14) are determined from the Clebsch-Gordon coefficients which occur
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from the angular integrals. These are tabulated by Sternheimer and are zero unless
,!l = Xf 1, where only the upper sign holds for £ =0. With the solutions to (15) the

polarization potential becomes

- ACK ) Vol
n,u'
where
2 of > 2
VP = Koy 5] Pl 1y Y e rp d iy tre | Pl ) Y Ly erpry dr; -
I'f [o} o I’.F

(16)

The constants Kn ., are numbers which depend on ,Q' and on the number of electrons
in an nt shell and have been given by Stemheimer. In the limit as re > the
polarization potential calculated here should approach -q/r4, where a is the dipole

polarizability, thus providing a convenient check on the accuracy of the solutions Vp'

[ll. THE SCATTERING EQUATION
As mentioned in Section |, both target distortion and electron exchange are

extremely important in electron scattering by the alkali atoms and must be dealt with

accordingly in the scattering equation. On the other hand, if one wishes to obtain

cross sections over a fairly wide energy range as in the present investigation, the
| scattering equation must be written in a reasonably tractable form, since many partial
waves are required in the calculation. In order to achieve these objectives the
scattering equation is written as essentially a two electron equation for the free
electron and the single valence electron in the field of the perturbed core orbitals
with exchange between the incident and valence electrons included explicitly.
Exchange with core electrons is accounted for implicitly through the exchange term
As(r) of equation (7) and core polarization is included directly through Vpc(r) which
is the polarization potential of the core electrons. The Schroedinger equation may

then be written in the form
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[vf+\722+E-V(r') V(r)+A(r)+A(r)+Vp (r)+V (r ] _’ =0,

(17)
where —r} and —;2 are position vectors for the two electrons, and the terms V(r), As(r)
are given by equations (6) and (8). Vpc(r) is the polarization potential for the core
electron calculated by the method of Section 1.

With this scattering equation the adiabatic exchange model is again utilized
to express the wave function ‘i’(—r] , 72) for the free and the bound electron. In this

approximation Y is written in the form

¥y, Ty = VEL T Fi) T E) FE), (18)

where l!fo is the ground state wave function for the valence electron, V' is the
perturbed ground state function which is perturbed adiabatically by the free electron
whose wave function is F, and the perturbation term is 2/r]2

The plus sign in (16) refers to the symmetric (singlet) state of the two electrons,
and the minus sign to the antisymmetric (triplet) state. In the adiabatic exchange
approximation adopted here the symmetry of the wave function Y is partially destroyed
since the unperturbed bound state function d!o appears in the second term of (18)
rather than the first order perturbed function ¥'. The omission of the first order
perturbed term in the exchange wave function means that the function ‘Y(r] , 2) is
not completely antisymmetric except in the limit of large f where the perturbation
becomes zero. This approximation is consistent with the perturbation calculation
of H.F. functions in Section Il and should have an equally small effect on the
accuracy of the scattering equation. ’

The perturbed ground state function ' is written, as in Section 1, in

the form
Vi) = v 6+ xE, 7, (19)

and the perturbation X is determined from equation (9).
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Equation (18), with ¥ written as in (19), may be substituted into equation
(17) in order to obtain an equation for the free electron function F. With this sub=-
stitution, equation (17) may be multiplied on the left by lh:(_;]) and the result
With the use of equations (5), (9) and (12) the Schroedinger

-
r L
1
equation becomes

integrated over
[V2+k2"V(r)+A(r)+V (r,) +V, ("):]F(T)
2 o o 2 s' 2 Pe 2 PvY2 2

_+ x> 2 2 ~ >

=2 [de 00 KZ-E )R 1,6 (20)
where the upper and lower signs refer to the singlet and triplet states respectively.
Here the term kf =E- Eo is the kinetic energy of the free electron and Eo is

the ground state energy of the bound electron. Vo(rz) is defined as

Vo(r2) B Qo |% + V(r2) I ll’o>

which is the screened Hartree-Fock potential for the neutral atom. The term
Vp (r2) is the polarization potential due to the perturbed valence electron and
v

is given by
_ * 2 > - -
Vo (i) = [ 12 |?2'| Xy, rpddry

which is, in the dipole approximation, just that of equation (12) where X is to
be determined from equation (11). Thus the sum of the two terms VPc + va is
the polarization potential for the core plus the valence electron and is just the
polarization potential of equation (12) for the complete atom. This will be
denoted by Vp.

By the use of a partial wave expansion of the free electron wave function

F(r) equation (20) can be reduced to a radial equation for each partial wave f .

Thus we write
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() =;Z ! f, () P (cos 8,) 21)

With this expansion, the equation for the partial wave f becomes

2 O
—d—2f+ 2oy ey oaa AN e vy 6 2D [ £ U dr
al ! o o p s 2 4 o} o loo o o

© r

_d .

+ {7!_:_—]} X r{[ F‘Uor ( +])dr +r (‘H)J f‘uo redr
o

r
| fy o, () d% (22)
[o]

where u_ = r“l Wo is the radial part of the normalized ground state wave function
for the vclence electron.

The integrodifferential equation (20) may be solved in a non-iterative fashion
by a procedure used by Marriott, I or in an iterative self-consistent calculation
as was used in the present work.

If electron exchange is completely ignored between the bound and free
electrons, the scattering equation (22) reduces to a homogeneous equation where
the right side is identically zero. Solutions to both sets of equations were obtained

in order to determine the effect of exchange on the calculated cross sections.

1V. APPLICATICN TO Li AND Na
A. Calculated Polarization Potential
In the calculation of the polarization potential, the unperturbed wave
functions for the atomic system were taken as the Hartree-Fock-Slater (H.F.S.)
wave functions obtained from a slightly modified program originally written by

Herman and Skillmann, 12 The output of the program furnished the functions



-11-

v(r), As(r), e: and Pn,(r) in equations (15), which could then be solved for the

perturbations Un)—»)l’ of a given orbital whose radial function is Pn,l'
value of ry equations (15) were integrated by the Numerov process for inhomo-

For a given

geneous equations as described by Hartree, 13 over the same " mesh as that of the
H.F.S. program which fumished the unperturbed functions. The integration in the
6

inner region was started by noting, as did Sternheimer,® that for ™ 0 the inhomo-
geneous term on the right side of (11) is negligible as compared to the potential terms
on the left. The solution may thus be started by a series expcmsion]3 near the origin
and continued by numerical integration. With this procedure there is an arbitrary
constant in the starting values, this being the value of (Un(—»i/rH])O' For the
inhomogeneous set of equations (11), this parameter in the starting conditions must

be determined in order to satisfy the boundary conditions; that the solutions to (1 la)
and (11g) and their derivatives match at =T and that the solution be exponentially
decreasing at infinity. The value of (Un’_d'/rlﬂ )0 was varied automatically in the
coded program until two values were found which enclosed the correct one. The
choice was then narrowed by successive solutions until an accuracy of five to six
significant figures in the starting value was achieved. The calculations were performed
on a Univac 1107 computer at the University of Alabama Research Institute.

In the present calculation the total polarization potential was taken to be
that contributed by electrons in the two outermost shells of the alkali atom. For
Li both the core and valence electrons are in s-states. In Sternheimer's notation
these undergo s — p perturbations and the radial equations must be solved for the
perturbation U] 01 and U2,O—>l' In the case of Na the 2s and 3s electrons
experience s —p excitations similar to Li. However, for the 2p electrons, two
modes of excitation 2p - d and 2p — s are possible and the perturbation U2' 12
and U?-’]_>0 are required, |

The solutions to the pair of differential equations (11) for the perturbations

U i(r, rf) exhibit a behavior very similar to the simpler solutions obtained by

ni~>L
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Sternheimer. Thusthe nodes of the radial function Un =1 correspond in number
to the orbital next higher in energy than n& having {' angular momentum. Also
the contributions ns +p and np — s are opposite in sign as found in Sternheimer's
calculations and tend to cancel each other in their contribution to Vp. (Stern-
heimer supports this behavior with a reasonable physical and mathematical argument.)
The solutions to equations (11) are of course more complicated than those of Stern-
heimer since his equations correspond to those only in the asymptotic region of re
where only one of equations (11) holds. As the free electron moves in toward the
nucleus, the pair of equations must be solved for each value of e In the actual
solution the equations were solved over a 441 point mesh on r and for 110 values
of ree As one would expect from physical arguments, the amplitude and to some
extent the shape of the perturbation Un!.—»l:(r’ rf) of an n X orbital depends on the

position re of the free electron. The perturbation is small for large r,, largest when

/
Fea T s where X is the position of the largest maximum of the unpe:furbed function,
and small again for ren 0. This is clearly shown in Fig. 1 where the unperturbed
radial function P3s(r) for sodium and the perturbation U3,0—>l(r’ rf) for three values
of rpare shown,

We have so far considered the core polarization as being due only to the
electric field of the incident electron. However, since the valence electron is
strongly polarized bythe field of the incident particle, there is an induced field
acting on the core due to the polarized valence electron orbital. 14 This field
tends to induce a moment of opposite sign in the core orbitals, thus decreasing
the effective polarization of the core. An estimate of the size of this effect can
be obtained by calculating the electric field at the nucleus AEVOI(O) due to the

perturbation of the valence electron wave functions., The z-component of this

field is given by14
@

_ -2 |
BE o 0r) = e j p. 4T cos Bdv (23)

(o]
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where Pind is the electron density induced by the field -e/r? of the charge -e

at z = Fee For the valence electron in an s-state this becomes

®
4 -2
AEV°|,Z(O' rf) ~°3 I PnO(r) Un,0—>l(r' rf) rodr. (24)
o

If the valence electron were completely external, the total field acting on a core
electron would be the sum of that due to the free electron and that given by the
induced field of Eq. (24). However, since the valence electron penetrates the
core the effective field due to the valence electron is reduced from this value.
But more important for our purposes is the fact that in the scattering problem the
perturbing electron also penetrates the atomic sys'tem. Thus the induced field
(Eq. (24)) is a function of res and since the core polarization potential only be-
comes appreciable for small values of Fer it is necessary to calculate the induced
field of the valence electron for several values of e in order to estimate the size
of this effect on the core polarization as compared to the direct field of the pene~
trating electron. This has been done by evaluating Eq. (24) for several values of
Fee The results for Na are shown in Table 1.

TABLE I.  Electric Field at the Nucleus due to

Perturbed Valence Electron of Na as
a function of rg.

rf(ao) 211 .597 3,017 6.075-

AE ©, r) L0169 .0372 .0949 .0501
val,z f

We note that the induced field of the valence electron first increases as
re decreases from infinity, reaches a maximum for Ty (see Fig. 1) and then
decreases rapidly for smaller values of s approaching zero at re= 0. This can
easily be seen from Fig. 1 where the amplitude of the perturbation of the valence

electron is seen to first increase and then decrease as e gefs smaller.
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In order to estimate the effect of this interaction on the calculated polari-
zation potential, we show separately in Fig. 2 the polarization potential from the
valence electron and from the core electrons as calculated from Eq. (16). Then
note that for values of r greater than ~20° where the induced field of the valence
electron is appreciable, the polarization potential due to the core electrons whether
due to the direct terms from the incident particle or from the induced field of the
valence electron is essentially negligible as compared to the large valence electron
contribution, Furthermore, for small values of e where the core polarization potential
becomes appreciable, the induced field due to the valence electron becomes small
as compared to the perturbing field of the incident electron (down by a factor of
six from its maximum (Table 1)) and thus can reasonably be neglected in the calculation
of vPc’ since this is the only region where VPc is important. Thus in the present
treatment the core and valence contributions to Vp are calculated independently
and added (Fig. 2), neglecting the induced effects of one upon the other, The
core contribution is almost entirely due to the 2p—d excitation, since the 2p—s and
2s—p contributions cancelled each other almost exactly.

As a check on the accuracy of the calculations one can compare the
asymptotic value of the calculated dipole polarization potential with the value
which one knows should result, namely Vp(rf) a/r4 for r - where a is the
dipole polarizability whose value is available from experiment. Thus, in Table Il
we give the calculated value of a from the present calculation which is obtained
from the equation a = Vp(r) . r? at re = 25q,. The results are converted to A
in Il and compared with experimental valuesls and with other calculations. 14
The agreement with experiment is very good.

TABLE Il.  Dipole Polarizabilities From Asymptotic

Value of Vp in Present Calculation and
From Experiment. 15

Li Na
Present 22,2 23.9
Measured 20-23 20-25
Sternheimer 24.9 22,9

(a) Ref. 14



- .Q\/ wns
. s 94 ,
11U} UM 18LeBo) A UOIIDB|9 SDUN LA BYY Woly pur 9A suoids|e
2105 BYL VG UOLINIELLIUND Uy Buimaus DN 404 [rruetod usyszusicd g *Bi4

)
1d| Zl (0] 8 ) ) 4 [ 0]

-16-

!

jetinziod

UOLIZZIIT,0d [Djl ] em—

SULIInG 1] i)
3 \Lw C._t‘_,w:ww_.h.w—\_.\. U eons ¢ mw o o

uo1INgII4uUoD)
UOIfO3|] 9OUD|DA ==« == =

twuzbor) -




-17-

B. Solutions to the Scattering Equation

The solutions of the scattering equation (22) for all partial waves Fl having
<7 were obtained by an iterative se!f consistent method of solution. In this tech-
nique the integration was started by expanding fl in a power series near the origin
and continued by Numerov's method. 13 In addition, the required starting values
for the integrals on the right side of (22) were obtained by first solving (22) with
the right side set equal to zero (no-exchange approximation). The resulting wave
functions were then used in the integrals for the next iteration.

Having started the iteration the entire integrodifferential equation was iterated
through a self consistent field procedure. For this, the integrals on the right side
were compared at some large value of r (r = 30, at which point the integrands vanish
to a good approximation because of the bound orbitals) with the value from the pre-
ceding iferation. If the value of the integrals from one iteration differed by more
than 0.1% from that of the preceding solution, then the process was repeated until
this criterion was satisfied.

For values of 4> 7 it was found that the exchange terms of Eq. (22) were
completely negligible, therefore the solutions fX were found by simply solving the
homogeneous equation obtained by setting the right side of (22) equal to zero.

The phase shifts 8: and 8; were obtained directly from the solutions to
Eq. (22) by integrating the equation out to a distance which was large encugh that
all terms in the differential equation were negligible as compared to k2 < ]0_4).
The phase shifts were obtained by comparison with the spherical Bessel functions.
The distance at which this criterion is satisfied depends, of course, on the value
of k2. For the smallest values of k this distance was chosen as large as 500 a, and
for the highest values of k it was as small as 35 a e The proper multiple of w to be
added to the phase was obtained directly by a node count on the solutions f( and

on the corresponding Bessel funcﬁonsjl. The result was available directly from the

additional number of nodes in the function f, .

X
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For comparative purposes, the first few phase shifts for Na are shown in
Fig. 3 with exchange included and in Fig. 4 with exchange neglected in the
scattering equation. The effect of exchange is evident in the plot of the phase
shifts. However, in the calculations of the total cross sections the effect is much
more pronounced.

The values of the phase shifts for singlet and triplet scattering are listed
in Tables A=l and A-lI of Appendix | for several energies. In Table A-ill are
the phase shifts for higher values of § where the triplet and singlet partial waves
were indistinguishable. Finally, in Tables A=V and A~V are listed the phase
shifts for Li and Na with exchange effects ignored completely. 16

V. TOTAL ELASTIC SCATTERING CROSS SECTIONS
With the phase shifts 8; and 8; determined, the total elastic scattering
cross section for the singlet or triplet case may be determined (in units of naoz)

from the expression

+
ot = (kiz-) Z 21+1) sin2 8{
1
where the (+) refers to the singlet and the (=) to the triplet states of the system,

The total cross section is then

If electron exchange is neglected the total cross section is given by Eq.
where the 8’\ 's are those obtained from the homogeneous equation analogous to
Eq. (22).

In Figs. 5 and 6 the total elastic scattering cross sections for Li and Na
are shown compared to the experimental results of Perel, Englander and Bedersonw

and of Brode. 18 (The results are plotted as a function of volts in order to show
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the low energy values more clearly.) The agreement with experimental values over
the range of the experiments is quite good. In particular we note the double reso-
nance exhibited by the total cross section, one at about 1/4 volt and another smaller
peak at about 1.5 volts which corresponds exactly in energy to the experimental peak
in this region. Unfortunately, no experimental cross sections are available for Na
and Li in the very low energy region as in the case of Cs, thus the second peak in
the calculated cross section cannot be checked against experiment at present. The
calculated cross sections are about 5-15% higher than the experimental values of
Perel, et al., however, their results were normalized to those of Brode at 2 eV,
thus the absolute values of the experimental curve may be in error by this amount,
particularly since Brode]8 states that his values below 4 eV are uncertain to X 15%.

Also shown on Fig. 5 are some recent theoretical cross sections for Li obtained
by Bauer and Browne]9 and by Vinkalns, Karule and Obedkov.20 The results of Bauer
and Browne were obtained by adjusting a variable parameter in an approximate ex-
pression for the polarization and exchange potential. The results of Vikalns, et al.,
were obtained using a polarization potential obtained from coupling with the first
excited p state (2p) by perturbation theory. The results of the present calculations
are in much better agreement with experiment than any of the prior calculations.

We note in Fig. 5 and 6 that in the present results for both Li and Na the
calculated cross sections decrease to relatively small values at very low energies.
The values at zero energy were determined by calculating the scattering lengths

+
A~ for singlet and triplet states from the modified effective range theory expansion
+ + +
tan 0> = -A k - (xo/3) K2 - (daA/3) K In (1,23 VoK) + -+ -

+
where A~ is the scattering length. The values of A were obtained from the phase

shifts at k = /.00025 (RY) and are shown in Table VI.
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TABLE Hll.  Scattering Lengths for Li and Na

Li Na

At A At A

7,554 2,088 6,511 1.634

It is worthwhile to compare the scattering lengths of Table Il with those calculated
for electron=hydrogen scattering by various methods. In the case of hydrogen the
singlet scattering length is NE 600 and the triplet A™ = 200 (Resenberg, Spruch
and O'Mc:lley22 give upper bounds of 6.23 a, and 1.91 a, respectively for A¥ and
A"; other calculations agree well with these results.“”) We note from the results of
Table H1l that both the singlet and triplet scattering lengths of Li and Na are very
little different from those of hydrogen. This is significant for two reasons. First,
though the alkali atoms are much more complicated than hydrogen, they retain
hydrogen-like characteristics and polarization and exchange effects are similarly
important as in the hydrogen atom. Second, and perhaps more important for com-
parison purposes, is the fact that the negative ions of Li and Na are estimated to
have approximately the same binding energy as that of the hydrogen atom (roughly
.7-.8 eV).24 Thus, heuristically one would predict that the singlet and triplet
scattering lengths for these alkalis should resemble those for hydrogen, which is
true in the present calculation.

The present results for zero energy differ quite drastically from those of
other calculations for alkali atoms. The results of Vinkalns, Karule, and Obedkov20
for Li are AT = -4.8 and A" = -10.4 and those of Salmona and Seafon25 for Na
are AT=9 and A” = =12, Both these results are very much different from those for
hydrogen and from the present results, being exactly opposite in relative magnitude

and yielding much larger values of o for E =0. The present results also differ greatly

from those for Cs by Crown and Russek,26 AT =-20 and A” =360 a, which yield
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very large cross sections at zero energy. Though no experimental data is available
for comparison at very low energies, the present results seem more reasonable from
the above argument. Also the results at higher energies are much better in the
present calculation than in any of the previous alkali atom calculations, which
lends some support to the present low energy results.

Finally in Figures 7 and 8 are plotted the total elastic scattering cross
sections for Li and Na neglecting electron exchange. The results are compared
with those having exchange included, thus exhibiting the effect of the Pauli prin-
ciple on the calculated cross sections. The results at low energy are, as expected,
strongly effected by exchange effects. This is especially true for Na where the
figure shows that the results differ by an order of magnitude. Thus one can con-
clude that computed electron scattering cross sections for the alkalis are completely
unreliable at energies below one volt in the no-exchange approximation, a fact
which has earlier been demonstrated in the case of Cs.

VI. CONCLUSIONS

From the results obtained in the present calculations it seems that the
method of polarized orbitals and the adiabatic exchange approximation is capable
of describing low energy electron scattering from more complicated atomic systems,
these being represented by H.F. type wave functions. In the calculation of the
polarization potential for the alkali atoms, the approximation used in earlier cal-

14

culations, /10 that only the outer region of the perturbation equations be included,
seems to be inadequate. Since the valence electron is very weakly bound, the wave
function of the valence orbital has an appreciable amplitude over a rather large dis-
tance, and the inclusion of the inner and outer regions in the equations for the per-
turbed radial functions gives a strong dependence of the amplitude and the shape of
the perturbation U“f"i’ on the free electron position. With the strong dependence
of the scattering cross sections on the shape of the polarization potential in the

region near the atomic radius, this behavior should not be ignored in the calculation

of V .
P
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There are two points which should be mentioned in comparing the present
interaction potential for electron-alkali atom scattering with other calculations
on the same problem. The first, which was pointed out by Temkin,4 is that the
perturbed orbitals X; contain, at least partially, the effects of both the continuum
and configuration interaction. The perturbed wave function contains terms of
higher angular asymmetry than the original function and corresponds roughly to a
perturbation of some closely lying configuration. Furthermore, the radial dependence,
which arrives from the solution of an inhomogeneows set of equations, reflects the
effects of all higher states even of the states of the coni‘inuum.4 The methods
employed in other calculations for the alkalis include the contributions from only

5,23

a limited number of higher states to the polarization potential, usually only one

2
or at most two or three™ '/

excited states. This has been shown to be adequate
for very large e where the results may be compared to that yielded by the dipole
polarizability,24 but for values of re comparable to the atomic radius where the
perturbaticn is considerably stronger this approximation may be inadmissible.
Another significant difference in this comparison is the treatment of the
core electrons, Here, both the effects of core polarization and exchange are in-
cluded, ot least approximately; core polarization bydrect calculation and exchange
in the core through the use of the Slater exchange approximation for the exchange
potential in Eq. (17). Sample calculations for Na neglecting these effects indicate
that both contributions are important for some values of E. The method of Bauer and
Brown26 yields a convenient approximation to both effects, though adjustable para-
meters are involved in the calculation. Their calculated cross sections for Li are
well below experimental values in the region just below the first excitation threshold.
In the present treatment the Slater approximation for the exchange terms in
the Hartree-Fock equations was utilized in calculating the bound state as well as

the free wave functions. There are, of course, more accurate wave functions

available for Li and Na, but the magnitude of the problem begins to be unmanagable
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in the complete H.F. perturbation calculation. The H.F.S. wave functions are,

in fact, very close approximations to the H.F. solutions and since exchange polari-
zation terms are neglected in the polarization potential calculations, it seems that
little would be gained by using more exact H.F. ground state wave functions in the
equations derived here. In fact, the present investigation indicates that a useful
criterion for a "good" set of bound state wave functions in a low energy scattering
problem where the polarization potential is so important is that set which gives a
good value of the polarizability in the polarization potential calculation. The

H.F.S. wave functions used here satisfy this requirement very well.



APPENDIX

Tables of phase shifts for Li and Na
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TABLE A-lV
Phase Shifts for Lithium (No exchange) .
& 8 5, 8, ‘ 8, 8¢ 8, 5,
.0005  3w-.142  2x-.005  w+.001 o ‘
.00075° 3w-.182  2n-.014  w+.003
.0010  3w-.217  27-.024 w+.004 .001
.0015  3x-.279  2n-.048  w+.007 .002
.0020  3r-.331 27-.073 = +.010 .003
.0025  3w-.379  27-.100 w+.012 .004
.0030  3m%-.422  2¢-.127 w+.015 .005
.0040  3r-.500 2¢-.180 w+.019 .007
.0050  3w-.569  2n-.231 m+.024 .008 .004
.0060  3n-.631 2r-.279  w+.029 .010 .005
.0075  3n-.741  2n-.346  n+.036 .013 .006
.010 3n-.836  2n-.447 1 +.048 .019 .008
.020 3n-1.197 2x-.750  w+.092 .049 .016 .008
.030 3n-1.452 2n-.963  w+.120 .100 .027 .012  .008
.050 2r+1.313  2r-1.231 1 +.142 .276 .064 .025 .013  .008
.065 2n+1.098 27-1.397 w+.133 .467 .110 .040 .019 .01l
.075 2n+.976  2m-1.480 w+.120 .602 .130 .047 .022  .013
.085 2r+.867  2n-1.575 nw+.103 776 167 .060 .027  .015
.100 2n+.720 w+1.487 w+.075 .983 217 .081 .03  .019
115 2m+.590 n+1.388 w+.044 1.185 .285 .105  .047  .024
.125 2r+.511 7+1.328 w+.022 1.300 .327 .121 ,054 029
.150 2r+.335 7+1.193 w-.031 w-1.501 .422 162,073 .038
.250 2n-.179 n+ .805 w-.228 w-1.368 .790 354 174 095
.350 2w - .530 w+.544  w-.383  w-1.257 .033 519 276 156
.400 2n-.673 n+ .441 m-.451  m-1.244 .118 593 .330 .190
.450 2n-.798 7+.350 w-.512  nw-1.240 .184 660 379 .224
.500 2r-.913 7+.269  w-.569  w-1.243 .237 718 .421 257
.550 2r-1.014  7+.,197 w-.620 w-1.245 .271 764 462 284
.650 2r-1.193  ¢+.072  «-.711  1©-1.263 .325 .845 .533  .340
.750 2r-1.347 -.033 w-.789 n-1.289 .357 910 .593 .39
1.00 n+1.490 7-.237 7-.950 =-1.358 .393 1.010 .711 496
1.50 w+1.062 m=~.506 m-1.173  n-1.491 .380 1.095 .839  .636
2.00 w+.768 n-.685 w-1.32 1.561 .336 1.111  .897  .715
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Energy 83 I T L T L TR T o(a;)
~0005 504.4
00075 559.7
.0010 607.5
.0015 693.0
.0020 770.9
.0025 842.3
.0030 873.9
.0040 1030.3
.0050 131,10
.0060 1214.1
.0075 1310.6
.010 1411.5
020 1456.9
030 1289.0
050 1071.1
065  .007 1033.3
075  .008 1031.6
085  .009 1089.7
100 .0l 1106.6
115 .014  .009 1103.7
25 .017 .01 1077.6
50 .021  .013 969.1
250 .054 032 755.3
350 .091 .05  .035 684.4
400 114 071 .045 662.8
450  .136  .087  .056 648.7
500 159 .103  .066 633.7
550 .182 117 .784 617.1
650 220 .147 .09  .067 590.5
750 261 177 .12 .085  .061  .043 569.0
1.00 349 247 176 128 .02 .069  .051  .038  519.1
1.50 477362 .273 .210 160 .122 .09  .073  440.7
2.00 562 444 348 .278  .219  .172  .140 .10 382.0
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TABLE A-V
Phase Shifts for Sodium (No exchange)

Energy 80 8] 52 83 84 55 86 87 88 89

00075 4r-.178 3m-.295 m+.002 |

.0010 4n-.212 3w-.333 =w+.003 .0003

.0015 4n-.273 3w-.397 n+.006 .001

.0020 4n-.327 3n-.451 @ +.009 .002

.0025 4v-.375 3n-.499 w+.013 .003

.0030 4n- .418 3n-.542 a+.016 .004 .001

0040 4n~ . 497 3n-.617 w+.023 .006 .002

.0050 4w - .566 3mw-.682 w+.029 .008 .003

.0060 4n-.629 3w-.741 w+.035 011 .004

.0075 4w-.714 3n-.819 w+.045 .014 .006

0100 4w =-.837 3n-.929 n+.062 .014 .006

0200 4v-1.20 3n-1.25 w+.133 .057 .018 .009

0300 4n-1.47 3m-1.47 7+.189 .123 031 .014 .008

0500 3n+1.29 2n +1.44 «+.228 .357 075 .028 .014 .008

0650 3r+1.07 2w+1.26 xw+.225 616 124,043  ,020 .012 .008

0750 3n+.942 2n+1.16 w+.213 .810 162,057 .025 .014 .009

.0850 3r+.830 2 +1.07 nw+.197 1.01 205 .072  .,031 .017 .010

1000 3r+.679 2w +.954 w+.166 1.23 .275 .097 .042 021 .013 .009

1150 3rn+.544 2n+.846 w+.134 1.43 349 126 .054 .027 .016 .010

1250 u+.463 2n+.781 w+.112 1.53 401 .147 .064 .031 .018 .011

1500 3n+.281 2w +.637 nw+.056 1.56 514,202 .090 .045 .025 .015

2500 3n-.250 2n+.211 n-.,135 w-1.26 917 .422 208 .115 064 .037

3500 3n-.615 2n-.081 7w-.278 w-1.21 1.15 .609 .330 .190 .111 .070

4000 3n-.763 2n-.200 w-.337 w-1.20 1.23 .682 .388 .225 .139 .085
.4500 3n-.894 27-.305 w-.387 w~-1.21 1.28 .750 .442 .264 .162 ,104

5000 3r-1.01 27-.399 w-.433 w-1.22 1.32 .808 .486 .30] .188 123
.5500 3r-1.12 2n-.484 n-.474 w-1.22 1.35 .852 .53t .331 .215 139

6500 3n-1.31 2n-.634 nw-.543 =w-1.25 1.38  .932 .603 .3%9% .260 .177

7500 3n-1.47 2u-.762 w-.599 =-1.28 1.41 .986 .668 .448 306 .209
1.000 2r+1.34 27-1.02 #-.702 w-1.35 1.42 1,07 .775 .556 .39 .287
1.500 2r+.880 27-1.38 n-.817 w-1.47 1.38 1.12 .889 .691 .530 .408
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Energy 80 S %1z B3 By B By, o (&)
.00075 ' 4778.0
.0010 4594.1
.0015 4375.6
.0020 4235.2
.0025 4127.7
0030 4036.5
.0040 3877.5
.0050 3734.4
.0060 3601.6
.0075 3417.2
.0100 3139.1
.0200 2313.9
.0300 1780.6
.0500 1267.2
.0650 1206.7
L0750 1234.7
.0850 1256.2
.1000 1200.6
1150 1113.0
1250 1047.5
1500 914.8
.2500 753.4
.3500 044 724.8
4000 .054 712.9
4500 .067 704.3
.5000 .080 693.0
5500 094 679.5
6500 118 .080 657.3
.7500 146 101 072 .052 635.0
1,000 206 .152  .110  .081  .062  .044 575.3
1,500 313 .243 188 .145  .114  .086 .070  481.8
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